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AMtraet--The paper develops an analytic approach to assess the effect of three closure conditions on the 
critical-flow state in two-phase flow. The approach is based on the geometrical-topological analysis of 
dynamical systems. 

The details of the analysis are developed in relation to a "general slip" model which is completed by 
three closure conditions: homogeneous flow, Bankoff's hypothesis and the drift-flux model. For the sake 
of simplicity, the study is restricted to adiabatic flows and thermodynamic equilibrium. These make it 
possible to reduce the model to a single quasi-linear differential equation and to parametrize the problem 
with respect to the mass-flow rate rh and the total stagnation enthalpy h. The phase space is thus reduced 
to the P, z diagram. 

Detailed results are given for the flow of water/steam through a convergent-divergent nozzle 
discharging from a stagnation reservoir. All three closures lead to the same topological structure of the 
"potrait" of solutions in the phase space which incorporates a saddle point. 

The numerical results are summarized in table 1. This shows that the location of the critical cross-section 
(saddle point) is essentially unaffected by the closure chosen for the model; it is situated very close to the 
throat and downstream from it. The most significant critical-flow characteristics, such as mass-flow rate, 
critical pressure, critical velocity, critical void fraction and critical slip velocity differ markedly from those 
predicted by the homogeneous-flow assumption when the effects of slip are included. The differences 
between the two closures with the slip are significant but much smaller than between either of them and 
the no-slip model. 

All models calculate a very large increase in the void fraction as the critical state near the throat is 
approached. This is interpreted to mean that none of the three closures should be used to analyze critical 
flows, because their validity has been tested only for much lower values of void fraction. 

The critical velocity is a sole function of the local thermodynamic state. The two slip closures lead to 
considerable differences in this relationship when compared with the sound velocity under homogeneous- 
flow conditions. 

Key Words: two-phase flow, critical flow, slip model, two-phase flow modelling, closures for two-phase 
flow models, convergent~livergent nozzle, drift-flux closure, Bankoff's closure 

1. I N T R O D U C T I O N  

The purpose of this paper is to develop a predominantly analytic approach to the assessment of 
the effects of three closure conditions on the critical-flow state in two-phase flow. At the point where 
algebraic complexity makes it unavoidable, numerical results are generated by computer. Such an 
approach is more efficient than one based on a large number of computer print-outs, apart from 
leading to a clearer grasp of the underlying physics. The qualitative analysis employed in this paper 
can be exploited to discriminate between closure conditions regarding their quality and, in the light 
of reliable experimental data, on critical flow; its use greatly facilitates the task of predicting the 
occurrence of critical-flow conditions in terms of a preferred mathematical model, as shown by 
Bilicki et al. (1987). 

The current state of the art provides no generally accepted set of equations which could serve 
as a basis for a preferred model. This conviction has been confirmed and reinforced by two recent 
workshops (see Hewitt et al. 1987, 1988). To illustrate the method in this paper, we have chosen 
a relatively simple, two-velocity model based on the usual three conservation laws. The model is 
spatially one-dimensional, operates with time-averaged properties, and integral averages taken over 
a cross-section. The present "general slip" model is so constructed that specialization to three 
closure conditions can be easily accomplished. The three closure conditions selected for study are: 
homogeneous flow, Bankoff's (1960) proposal for slip and the drift-flux model (Zuber & Findlay 
1965). A similar model was used by Lyczkowski (1978) and others (Ishii 1977; Lahey & Moody 
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1984). Some well-known results for the homogeneous model are introduced as a reference, but the 
results for unequal velocities of the phases are new. Although the model admits the existence of 
unequal local velocities of the two phases, it is limited to a uniform pressure and thermodynamic 
equilibrium in a cross-section.t For the sake of simplicity only adiabatic flows are analyzed. 

2. THE MODEL EQUATIONS 

Applying the mean-value theorem to integral forms (e.g. Delhaye 1981), we are led to the 
following conservation laws: 

d 
-~z (Apw) = 0, [la] 

dP d 
A -~z + ~ [Ap(w2 + xyu2)] = - 2(rcA)'/2z' [lb] 

d 
d-z ~Ap {[h + ½(w 2 + xyu2)]w + xy[hG -- hL + uw -- ½(y -- x)u2]u}~ = O. [ l c ]  

Here, A denotes the area of the cross-section, p is the density, w the velocity, P the pressure and 
T the shearing stress. All properties represent cross-sectional averages of time-averaged quantities. 
The phase composition is measured by the "static" dryness fraction 

x = - -  v - - - ;  1 - - x = y  , [2] 
v G - -  v L P 

where the subscripts G and L, respectively, refer to the vapor and liquid. This quantity is related 
to the void fraction by 

or(x, P) = XVG [3a] 
v 

The equations include the slip velocity u = WG- WL and the mixture enthalpy 

h = [OtpGhG + (1 -- ~t)pLhL] [3b] 
P 

The preceding model constitutes a system of three ordinary, coupled, nonlinear differential 
equations for the four unknown functions of longitudinal distance 

e(z),v(z) ,  w(z) and u(z). [4] 

The fourth equation is provided by the closure condition which we assume in the form of an explicit 
expression in the slip velocity u. As already stated, we consider three examples for future 
comparison: 

(a) The homogeneous model, with 

u = 0 .  [5] 

(b) Bankoff's (1960) expression for the slip ratio 

S = - - = - - W G  1 -- Ct [6a] 
WL K - -  ~' 

where K is a constant ranging from 0.7 to 0.9 In terms of our variables, this 
hypothesis is equivalent to 

1 - K  
u = w, [6b] 

K - ~ + x ( 1 - K )  

t i t  is not  suggested tha t  this  is necessari ly a just if ied a s sumpt ion ;  it is m a d e  for concreteness.  Nonequ i l i b r i um flows 
can be t rea ted wi th  the aid of  the same formal ism.  
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(c) 

where ~(x, P) has the form given in [3a]. The usefulness of this closure is limited 
to low values of void fraction.I" We note that Bankoff's model reduces itself to 
the homogeneous model for K = 1. 
The drift-flux model postulates that 

wo = Voj + C0j, [7a] 

where 

j = ~w o + (1 - ~)w L [7b] 

is the velocity of the volumetric center of the mixture. Vcj is the difference 
between the average velocity of the gaseous phase and the velocity of the 
volumetric center. The quantity Co is known as the distribution parameter. Ishii 
(1977) and Ishii & Zuber (1979) have given a number of correlations for VGj and 
Co, both of which depend on the flow pattern and differ from diagram to 
diagram, albeit within the comparatively narrow limits of 1.0-1.5 for Co and 
0-1 m/s for VGj. The slight departures from linearity in the wo vs j  diagram are 
ignored. 

We express the slip velocity in terms of the drift-flux model parameters and 
obtain, after a somewhat lengthy calculation, the relation 

voj + (Co - 1)w 
u - [7c] 

3. G E N E R A L  FEATURES OF THE ANALYTIC METHOD 

The analytic method to be applied to the model consisting of [la--c], augmented by the closure 
conditions [5], [6b] and [7c], taken in turn, has been presented in detail by Bilicki et  al. (1987). The 
theory contained therein makes it possible to determine the "portrait" of the ensemble of solutions 
of the class of models whose canonical form is 

da 
A(a) dzz = B(a, z), [8] 

of which the present one is a member. In our case, the vector a has the n = 3 components P, v 
and w mentioned in [4]. The n × n matrix A and the n-vector B are specified by each model. Several 
detailed applications have been given by Bour~ (1986, 1987a, b). 

In the present case, the representation can be simplified considerably if it is noticed that [la] and 
[lc] can be integrated explicitly, thus providing the following two "constants of the motion", the 
mass-flow rate 

rh = A p w  [9a] 

and the stagnation enthalpy 

h = h + ½w 2 + ½xyu 2 + xy[hG -- h L + UW + ½(y --  X)U 2] U. [9b] 
w 

By a process of tedious elimination, the set of equations [la-c] can be reduced to the following, 
single, nonlinear ordinary differential equation 

dP b(P,z; rh, h) 
dz - a(P, z; rh, h)" [10] 

An early and more direct analysis of an equation of the same type which occurs in single-phase 
flow was given by Kestin & Zaremba (1952). However, in this paper, we prefer to cast our treatment 
in the same terms as those used by Bilicki et  al. (1987) in the most general case. 

"l'These must satisfy the condition • <<K, because when c¢ approaches the value of K (of order 0.9), the slip ratio assumes 
unrealistic values. 
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Explicit expressions for the functions a (equivalent to A) and b (equivalent to B) are listed in 
the appendix. The terms are so arranged that the three closures can be inserted into them explicitly. 
In the case of the homogeneous model with u = 0 we obtain the very easy-to-handle formst  

a = 1 + w 2v~hv + Oev [lla] V 2 

and 
b=plw2R'R fw2 ( v / A  [lib] 

In the case of the other two closures, we must supplement the analysis with numerical calculations. 

The autonomous form of [10] is 

4. C R I T I C A L  FLOW 

d z  
d~ = a(P, z; m, h), [1 lc] 

dP 
- b ( P ,  z ;  m,  h) ,  [1 ld] 

d~ 

where ~ is a dummy parameter. The phase space of our system reduces itself to the two-dimensional 
P, z diagram. The values of a and b at any point determine the direction of the tangent vector 
V(P, z), where V: = a and Vp = h. The "portrai t"  of the ensemble of solutions is clearly described 
by the vector field V. In particular, singular points P*,  z* are described by 

a = b = 0. [ l l e ]  

The topological character of each singular point is determined by the eigenvalues of the linearized 
version of  [1 lc,d]. 

In order to attain critical-flow conditions, it is necessary to satisfy a = 0 at the end of  the channel 
or to create a saddle point with conditions a = b = 0 inside the channel. Many worked examples 
show that such a condition can be produced near a throat. Nodal points (e.g. Kestin & Zaremba 
1954) are sufficiently rare in the absence of strong centrifugal forces to be safely ignored here. 

"Portraits" involving a saddle point near a throat and a locus of  turning points have been 
discussed in several earlier studies (Bilicki et al. 1987). The resulting pattern is quite familiar from 
elementary gas dynamics, except for the fact that now the location of the various characteristic 
points and curves follows from more complex calculations. The contribution of this analysis is to 
show its relevance under much more general circumstances than those habitually assumed in gas 
dynamics. 

In all succeeding examples, the character of the singular points has been ascertained with 
reference to the linearized matrix, mentioned earlier and described by Bilicki et al. (1987). 

In the remaining part of this paper we examine the effect of  the three closure conditions when 
h and the pressure P0 are specified at the upstream reservoir together with the requirement that 
the flow trajectory should pass through the saddle point. The values o fh  and P0 place the stagnation 
state as well as the state at the entrance (z~ = 0) in the liquid region. Flashing occurs between z = 0 
and the throat. 

5. N U M E R I C A L  RESULTS 

The following numerical values have been assumed in the calculations: 

f = v2z-5 = 0.008 Co = !.2 
5pw 

K = 0.89 h = 762.2 kJ/kg 

VGj = 0.4 m/s PI = 10 b. 

The nozzle profile is the same as that studied by Bilicki et al. (1987). 

tWe  use the compact notation for partial derivatives: ~hv ~- (~v /Oh)  e etc. 
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Figure I a. P, z diagram: homogeneous-flow model. S---sadd|e point; a-b-c--critical flow rh *; d--reduc¢d 
flow rate rh = 0.9vh * (physically attainable); c--increased flow rate rh = |. In~ (physically attainable only 

in truncated nozzle). 
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Figure lb. ~, z diagram: homogeneous-flow model. S--saddle point; a-b-c---critical flow rh*; d--reduced 
flow rate rh = 0.9Ph* (physically attainable); e--increased flow rate Ph = 1. In+ (physically attainable only 

in truncated nozzle). 

The results that follow were obtained by inverse integrations starting with the saddle point S 
whose location must satisfy a = b = 0. This integration is iterated by computer until the required 
stagnation conditions are satisfied. Such a procedure is more efficient than trying to locate the 
saddle point by forward integration since trajectories diverge in the neighborhood of the saddle 
point. 

The diagrams in figures la, 2a and 3a give an idea of the "portraits" of solutions for the three 
closure conditions. Each diagram traces the trajectories a, b, c which pass through the critical 
cross-section S while starting in the subcritical region with the above inlet conditions. Along each 
one of them, the critical mass-flow rate, m *, has a value which is induced by the respective closure. 
In addition, each diagram shows a trajectory d with rh = 0.9rh* (pressure minimum) and one, e, 
with rh = 1.1rh* incorporating a turning point. No trajectory of the family e can be produced in 
practice other than by truncating the nozzle at the turning point. Corresponding diagrams in the 
c~, z-plane are displaced in figures lb, 2b and 3b. 

M+F 14/4~1 
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The data in table 1 represent the characteristic values of  the three critical flows under discussion. 
The following conclusions can be drawn: 

1. The location of the critical point is hardly affected by the pressure or the slip; in 
each case z*/z, ~ 1.01. This insensitivity of  the location of  the critical cross-section 
to varying condition has been observed by us before. 

2. The critical pressure ratio (0.890, 0.540, 0.555) is strongly affected by slip, but the 
effects of  the two different slip closures are not much different. The drift-flux 
model exhibited a higher critical slip velocity and a higher critical slip ratio than 
Bankoff 's  model, but it would be premature to assume that such a tendency is 
general. 

3. The critical mass-flow rate does not seem to be a monotone function of the critical 
velocity. 
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Figure 2a. P,z diagram: slip model, Bankoff closure. S--saddle point; a-b~>--critical flow rh*; 
d--reduced flow rate m = 0.9rh* (physically attainable); e---increased flow rate m = 1.1rh (physically 

attainable only in truncated nozzle). 

| . 0 0  - i ~ , l , , , i , , , i , , , i , , i l , , , i , , , i , , , i , , , i , , , i , , , i , , , i , , ,  I 

0 . 9 0  

o,o  i 
o . , o -  I f - f , ,  \ o.,o~ /// \\ 

o o. o- / / /  
o.,o-_ III ~ ~ 
o.,o :- ii/ \ 
o.,o ~- / / /  ~ . 
o.,o - - / , , /  - - -  
o . n o . ~ . ~ . , . . .  ~ ,"  . . I~ '" '~: ' , ; '  " ' i . ' : , ; '"  '~.',~,; ' ' '~ 

z / z  t 

Figure 2b. ~, z diagram: slip model, Bankoff closure. S--saddle point; a-~c-----critical flow m*; d--reduced 
flow rate n~ = 0.9m* (physically attainable); e---increased flow rate m = 1. lm (physically attainable only 

in truncated nozzle). 
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Figure 3a. P, z diagram: slip model, drift-flux closure. S--saddle point; a-b-c--cr i t ical  flow m*; 
d-- reduced flow rate rh = 0.9rh* (physically attainable); e--increased flow rate rh = 1.1rn (physically 

attainable only in truncated nozzle). 
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Figure 3b. ~t, z diagram: slip model, drift-flux closure. S--saddle point; a -~c - -c r i t i ca l  flow m*; 
d--reduced flow rate m = 0.9rh* (physically attainable); e--increased flow rate m = l . lrh (physically 

attainable only in truncated nozzle). 

Table 1. Critical parameters for the channel of  figure 2. Effect of  three closures: h = 762.2 kJ/kg, 
P0 = 10b, zt = 0.25 m 

Model 

(a) (b) (c) 
Homogeneous Bankoff Drift-flux 

Inlet velocity, m/s w~ 1.82 2.43 2.80 
Critical mass-flow rate, kg/s rh 50.6 67.8 78.1 
Location of  critical cross-section, m z* 0.253 0.252 0.252 
Critical pressure, b P* 8.90 5.40 5.55 
Critical velocity, m/s w* 22.0 58.5 49.7 
Critical void fraction ct* 0.670 0.841 0.783 

idq.  (-18 -43 -35 
Critical slope, b/m \ dz ] + 19 + 45 + 36 

Critical slip velocity, m/s u* 0 127 164 
Critical slip ratio S* 1 3.3 4.4 
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4. Bankoff's and the drift-flux models show a marked similarity. This might have 
been expected if it is noticed that for the drift-flux model the slip ratio satisfies 

s = [12] 
J 

(VGj + Coj) 

6. CRITICAL VELOCITY 

The general theory of mathematical models of the type of  [8] shows that its homogeneous form 
determines the critical velocity w* which is thus a clear function of  the local thermodynamic 
parameters, regardless of the form of B or b, that is of  the shape of the channel and the mass-flow 
rate. However, the closure conditions affect the form of a and so also the local critical relationships. 

To see it clearly in the present case, we note that in the previous section we integrated [10] to 
determine the trajectory P(z),  treating a and b as functions of  P and z t  with rh and h playing the 
role of  parameters. But an examination of  the terms of a in the appendix shows that we can treat 
a as a function of P, v and w. The solution of  the equation a = 0 then yields the critical velocity 
w* as a function of the local thermodynamic variables P and v independently of  the channel 
geometry or the mass-flow rate. 

It can be seen that the three closure conditions are each linear functions of  w. As a result, the 
condition a = 0 leads to a quartic in w*. In the case of  the homogeneous model, as indicated in 
[1 la], it degenerates to the expected result that 

v 2 

w .2 - [13a] 
v ~hv + ~ev' 

easily proved to be equivalent to 

w*2= 3pP at constant entropy. [13b] 

The preceding consideration shows that the choking velocity w*, associated with the speed of 
sound in gas dynamics, is a unique function of the local thermodynamic state in all three cases, 
albeit of  a different form in each. Since the coefficients in the quartic equation depend on the 
assumed closure conditions, it becomes clear that the choking velocity depends on the mechanisms 
which produce slip. 

The condition a = 0 was solved for each of  the three closures and the results are shown in figures 
4a and 4b. In figure 4a, P is the independent variable and the stagnation enthalpy h = 762.2 kJ/kg. 
Specification of  h allows us to determine the specific volume v from [9b] as a function of  P and 
w. Thus the calculation of w* reduces itself to solving 

a{P, w*, v(P, w*)} = 0 [14] 

for w* at each value of P. 
The values of void fraction are calculated from v at the given pressure with the aid of [2] and 

[3]. In figure 4b the void fraction itself is chosen as the independent variable, the pressure having 
been fixed at P*  = 10 b. 

Examination of the two plots in figures 4a and 4b shows, as expected, that the critical speed w* 
predicted by the two slip models approaches that implied in the homogeneous-flow model for small 
values of void fraction ~. Further, both plots show that the critical speed passes through a 
maximum in ~ when slip is present and differs considerably from that implied in homogenous flow 
at higher values of  ~. 

The plot in figure 4a can be interpreted to explain that the higher critical mass-flow rates 
predicted by the models with slip are due to sharply lower values of the critical void fraction 
compared with the homogeneous-model results and are not due to higher critical velocities. 

t T h e  c o o r d i n a t e  z a p p e a r s  explici t ly  in the  f u n c t i o n  a t h r o u g h  the s u b s t i t u t i o n  w = r h / p A ( z ) .  
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Figure 4a. Critical velocity for the three models as a function of local pressure: (a) homogeneous model; 
(b) Bankoff's model; (c) drift-flux model, h = 762.2 kJ/kg. 
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Figure 4b. Critical velocity for the three models as a function of local void fraction with P* = 10 b: 
(a) homogeneous model; (b) Bankoff's model; (c) drift-flux model, h = 762.2 kJ/kg. 

7. I N T E R P R E T A T I O N  

The use of  the no-slip, homogeneous-flow model is the result of  a natural desire for simplicity 
and for the convenience of being able to fall back on the results of  elementary gas dynamics; its 
utility is admittedly limited, except as a convenient vehicle for comparisons. The other two closures 
discussed here have been developed specifically to allow for the existence of slip in actual flows; 
their utility has been proven for dispersed flows of relatively low void fractions. It  has been pointed 
out in sections 2 and 5 that both slip closures lead to obviously unrealistically high slip velocities 
when the void fraction reaches values of  the order of  0.8. The results adduced in section 5 emphasize 
a severe limitation of their applicability under near-critical conditions. This is a compelling 
conclusion that we must draw from table 1 and figures lb, 2b and 3b. In all three cases the void 
fraction at inlet starts with ~ = 0 and passes through very low values, and yet the "predicted" 
critical value near the throat  is of  order ~* ,,~ 0.7-0.8 in all three cases. Additional calculations, 
omitted here for lack of space, confirm the otherwise known fact that the dryness fraction increases 
fast as critical conditions are approached because of  the high rate of  evaporation which 
accompanies fast rates of  pressure drops. It follows that all three closures break down somewhere 
between the inlet and the throat  and neither can be recommended for the analysis of  flows through 
channels with varying cross-sectional areas and, particularly, through convergent-divergent 
nozzles. 
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The same diagrams forcefully suggest, as intimated in the introduction, that experimental results 
on nozzles can be very useful in the assessment of the validity of closures. At the present time there 
are not enough reliable experimental data on such flows in the published literature. A program of 
this kind would materially contribute to the advancement of the discussion on the "closure issue" 
so ably illuminated by J. Bour6 (1986, 1987a, b). 

In addition to providing indications on how to contribute to the resolution of the "closure issue", 
the analysis of sections 4 and 5 draws attention to the fact that normally employed closures are 
most probably inadequate to cover flows whose representative points in phase space fall between 
the subcritical and supercritical branches downstream from the saddle point (if and when it must 
be expected). 
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A P P E N D I X  

Explicit Expressions for  the Functions a(P,  z; rh, h)  and b(P,  z; rh, h)  f r o m  [10] 

A circular cross-section with A ( z ) =  ~[R(z)] 2 and C = 2nR has been assumed; R ' =  - dR /dz .  
The shearing stress is assumed as z = 1/2fpw 2. 
The functions a and b in [10] follow from the reduction of the three mixture conservation laws 

to a single equation by using the mass conservation and energy conservation integrals. The 
derivation is tedious, so only the result is stated here: 

a = aiyl - y2a2, [A. 1] 

b = biyl - y2b2, [A.2] 

ai = 1 -t- pu 2 3e (xy )  + 2pxyu Oeu, [A.3] 

a2 = - O~,v + Ohv {3 uZ w Op(xy) + u Op [xy(hG -- hL)] 
W 

+ lu3 de [xy (y  -- x)] + a 3 ~?eu}, [A.41 

a3 = 3xyuw -F xy (hc  - hL) + ~xy(y  -- x )u  2, [A.51 

a4 = w 2 - x y  u [ho - he  + ½ (y  - x)u2], [A.6] 
W 

= 1 + Ohv ~ u Z w  O ~ ( x y )  + u ( h  o - hL) O~,(xy)  Yl  
W I. 

w(Wowu) } + ½u 3 do [xy (y  - x)l + -  + O~u + a3 [A.71 /j a 4  

( w )  
y2= p2{w2 + u2[v(y - x)O~,x - xy]} + 2pxyu t3~u +-~t?wU , [A.81 

and 

P bl = {[w 2 - xyu(u  - 2w Owu)]2R' - f w  2} [A.9] 

 2: hvIa ,a4+a3 wu, 1 CA10, 


